KIT | KIT-Bibliothek | Impressum | Datenschutz

On a Traveling Salesman Problem for Points in the Unit Cube

Balogh, József; Clemen, Felix Christian 1,2; Dumitrescu, Adrian
1 Institut für Algebra und Geometrie (IAG), Karlsruher Institut für Technologie (KIT)
2 Fakultät für Mathematik (MATH), Karlsruher Institut für Technologie (KIT)

Abstract:

Let X be an n-element point set in the k-dimensional unit cube [0,1]k where k2. According to an old result of Bollobás and Meir (Oper Res Lett 11:19– 21, 1992) , there exists a cycle (tour) x1,x2,...,xn through the n points, such that (i=1n|xixi+1| k)1/kck , where |xy| is the Euclidean distance between x and y, and ck is an absolute constant that depends only on k, where xn+1x1 . From the other direction, for every k2 and n2, there exist n points in [0, 1]k , such that their shortest tour satisfies (i=1n|xixi+1| k)1/k=21/k·k. For the plane, the best constant is c2=2 and this is the only exact value known. Bollobás and Meir showed that one can take ck=9(23)1/k·k for every k3 and conjectured that the best constant is ck=21/k·k, for every k2. Here we significantly improve the upper bound and show that one can take ck=35(23)1/k·k or ck=2.91k(1+ok(1)). Our bounds are constructive. We also show that c327/6, which disproves the conjecture for k=3. ... mehr

Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2024
Sprache Englisch
Identifikator ISSN: 0178-4617, 1432-0541
KITopen-ID: 1000172999
Erschienen in Algorithmica
Verlag Springer
Band 86
Heft 9
Seiten 3054–3078
Vorab online veröffentlicht am 18.07.2024
Schlagwörter Traveling salesman problem, Minimum spanning tree, Binary code, Relaxed triangle inequality
Nachgewiesen in Dimensions
Scopus
OpenAlex
Web of Science
Relationen in KITopen

Verlagsausgabe §
DOI: 10.5445/IR/1000172999
Veröffentlicht am 22.08.2024
Seitenaufrufe: 35
seit 22.08.2024
Downloads: 19
seit 22.08.2024
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page