KIT | KIT-Bibliothek | Impressum | Datenschutz

On a Traveling Salesman Problem for Points in the Unit Cube

Balogh, József; Clemen, Felix Christian 1; Dumitrescu, Adrian
1 Institut für Algebra und Geometrie (IAG), Karlsruher Institut für Technologie (KIT)

Abstract:

Let X be an n-element point set in the k-dimensional unit cube [0,1]k where k2. According to an old result of Bollobás and Meir (Oper Res Lett 11:19– 21, 1992) , there exists a cycle (tour) x1,x2,...,xn through the n points, such that (i=1n|xixi+1| k)1/kck , where |xy| is the Euclidean distance between x and y, and ck is an absolute constant that depends only on k, where xn+1x1 . From the other direction, for every k2 and n2, there exist n points in [0, 1]k , such that their shortest tour satisfies (i=1n|xixi+1| k)1/k=21/k·k. For the plane, the best constant is c2=2 and this is the only exact value known. Bollobás and Meir showed that one can take ck=9(23)1/k·k for every k3 and conjectured that the best constant is ck=21/k·k, for every k2. Here we significantly improve the upper bound and show that one can take ck=35(23)1/k·k or ck=2.91k(1+ok(1)). Our bounds are constructive. We also show that c327/6, which disproves the conjecture for k=3. ... mehr

Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000173632
Umfang 21 S.
Vorab online veröffentlicht am 04.10.2023
Schlagwörter traveling salesman problem, minimum spanning tree, binary code, relaxed triangle inequality
Nachgewiesen in arXiv
OpenAlex
Dimensions
Relationen in KITopen

Volltext §
DOI: 10.5445/IR/1000173632
Veröffentlicht am 22.08.2024
Seitenaufrufe: 37
seit 22.08.2024
Downloads: 62
seit 22.08.2024
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page