KIT | KIT-Bibliothek | Impressum | Datenschutz

A consistently linearized spectral stochastic finite element formulation for geometric nonlinear composite shells

Panther, Lukas 1; Wagner, Werner 1; Freitag, Steffen 1
1 Institut für Baustatik (IBS), Karlsruher Institut für Technologie (KIT)

Abstract:

Material and geometrical properties have a major influence on the structural behavior of geometric nonlinear shell structures. Therefore, uncertain structural parameters have to be considered within the context of stochastic structural analysis. The Monte Carlo simulation (MCS) is a widely used method for estimating statistical properties of the random structural response. Considering the computation time, however, this technique is challenging for complex finite element (FE) models and requires numerical efficient surrogate modelling approaches. An efficient way to propagate parametric uncertainties through complex models is the polynomial chaos expansion (PCE). Within the spectral stochastic finite element method (SFEM), the PCE is integrated into the FE formulation of structural elements. The application of the SFEM to geometrical nonlinear mechanical structures remains comparatively unexplored. In this paper, we present a geometric nonlinear spectral stochastic shell formulation. We use a layerwise formulation of the linear elastic material law to describe the behavior of composite materials. In order to apply Newton’s method during the nonlinear solution procedure, all equations are consistently linearized to achieve a quadratic convergence in the iteration behavior. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000179642
Veröffentlicht am 28.02.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Baustatik (IBS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 05.2025
Sprache Englisch
Identifikator ISSN: 0178-7675, 1432-0924
KITopen-ID: 1000179642
Erschienen in Computational Mechanics
Verlag Springer
Band 75
Heft 5
Seiten 1655–1683
Vorab online veröffentlicht am 23.01.2025
Nachgewiesen in Dimensions
OpenAlex
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page