KIT | KIT-Bibliothek | Impressum | Datenschutz

Thermal Urban Feature Segmentation - Multispectral (RGB + Thermal) UAS-based images from Germany with annotations

Vollmer, Elena ORCID iD icon 1; König, Susannah; Klug, Leon; Kahn, James ORCID iD icon 2; Volk, Rebekka ORCID iD icon 1; Vogl, Marinus
1 Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Karlsruher Institut für Technologie (KIT)
2 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The Thermal Urban Feature Segmentation (TUFSeg) dataset consists of annotated and combined RGB and thermal images, acquired by uncrewed aircraft system (UAS). They show various nighttime scenes from two German cities: Munich and Karlsruhe. Owing to the high overlap of 88%, only select images were annotated to prevent duplicate instances.

The raw images were recorded with a 4k normal (RGB) and a FLIR-XT2 (thermal) camera using both DJI M600 Pro and M300 RTK uncrewed aircraft (UA). The RGBs have a resolution of 4000 x 3000 pixels, the thermals 640 x 512. All images were registered to a uniform format (3000 x 3750 pixels) to match thermal image aspect ratio and prevent RGB data loss. The Munich images were recorded during 8 p.m. to 6 a.m. in December 2019 with temperatures ranging from -5 °C to 2 °C, the Karlsruhe ones between 12 a.m. and 3 a.m. in January and March 2022 with temperatures between 0 °C and 3 °C.

The dataset consists of 793 labelled images - 700 from Munich, 93 from Karlsruhe - from 14 UAS flights. A total of 8,010 common urban feature classes are annotated:
buildings - 1,404,
cars (cold) - 2,532,
cars (warm) - 1,036,
... mehr


Download
Originalveröffentlichung
DOI: 10.5281/zenodo.10814412
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Scientific Computing Center (SCC)
Publikationstyp Forschungsdaten
Publikationsdatum 27.02.2025
Identifikator KITopen-ID: 1000181606
Weitere HGF-Programme 46.21.04 (POF IV, LK 01) HAICU
Lizenz Creative Commons Namensnennung 4.0 International
Projektinformation AI4EOSC (EU, EU 9. RP, 101058593)
Schlagwörter semantic segmentation, RGBT, multispectral, remote sensing imagery, UAS-based
Art der Forschungsdaten Dataset
Nachgewiesen in OpenAlex
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page