KIT | KIT-Bibliothek | Impressum | Datenschutz

Thermal Anomaly Segmentation Dataset - Thermal UAS-based Images from Germany with Annotations for Semantic Segmentation Model Training

Ruck, Julian; Vollmer, Elena ORCID iD icon 1; Volk, Rebekka ORCID iD icon 1; Vogl, Marinus
1 Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The Thermal Anomaly Segmentation (TASeg) dataset can be utilised for the multi-stage training of spectral deep learning models for binary semantic segmentation. Specifically, it was designed to be used in the context of leak detection in district heating networks to segment thermal anomalies from the background in urban cityscapes.

The provided data consists of thermal imagery recorded in Germany, close to Munich and Karlsruhe, in December 2019 and January / March 2021 using FLIR and DJI's Zenmuse XT2 and a Matrice 600 / Matrice 300 unmanned aircraft system (UAS). Seven datasets (KA1, KA2, MU1, MU2, MU6, MU15, and MU16) form the basis of the dataset. These are provided as part of a previous Zenodo dataset publication "Detecting District Heating Leaks in Thermal Imagery: Comparison of Anomaly Detection Methods - Source Code and Datasets".

The dataset as a whole consists of two sets:
- The "generated_set" contains segmented annotation masks generated via heuristic algorithm, specifically adaptive triangle-histogram-thresholding.
- The "manual_set" consists of segmented annotation masks created by hand, by means of a custom labelling GUI tool.
... mehr


Download
Originalveröffentlichung
DOI: 10.5281/zenodo.14287864
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Publikationstyp Forschungsdaten
Publikationsdatum 29.07.2025
Identifikator KITopen-ID: 1000183574
Lizenz GNU General Public License v3.0 or later
Projektinformation AI4EOSC (EU, EU 9. RP, 101058593)
Schlagwörter Semantic Segmentation, Anomaly Detection, Drone, UAS, Thermal, Thermal Imagery, Deep Learning
Art der Forschungsdaten Dataset
Nachgewiesen in OpenAlex
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere EnergieZiel 11 – Nachhaltige Städte und Gemeinden
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page