KIT | KIT-Bibliothek | Impressum | Datenschutz

Leak detection using thermal imagery: Deep learning versus traditional computer vision state-of-the-art

Vollmer, Elena ORCID iD icon 1; Ruck, Julian 1; Volk, Rebekka ORCID iD icon 1; Schultmann, Frank ORCID iD icon 1
1 Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

As a cornerstone of climate-neutral heat supply in urban areas, district heating systems require monitoring to detect and mitigate leaks in their subterranean pipelines. Recent research has focused on an approach involving thermography, where leaks are detected as hot-spots in remote sensing imagery. To this end, various traditional computer vision algorithms have been implemented to automate anomaly detection.

This paper pursues a new approach that has so far received little attention in the context of leak detection in district heating pipelines: deep learning, specifically supervised semantic segmentation. By creating a generalisable, multi-stage training procedure to tackle the prevalent limited dataset problem, various architectures are tailored to this anomaly detection task, of which the SegFormer-B2 with Tversky loss is found to perform best. Via comprehensive quantitative, qualitative, explainable AI, and holistic evaluation, the model is assessed and compared to state-of-the-art traditional algorithmic alternatives. It is found to excel, outperforming previous intersection over union scores by almost 10 %pt and maintaining a high precision with little detriment to recall and detection rate.


Verlagsausgabe §
DOI: 10.5445/IR/1000183573
Veröffentlicht am 29.07.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2025
Sprache Englisch
Identifikator ISSN: 0924-2716
KITopen-ID: 1000183573
Erschienen in ISPRS Journal of Photogrammetry and Remote Sensing
Verlag Elsevier
Band 228
Seiten 505–518
Projektinformation AI4EOSC (EU, EU 9. RP, 101058593)
Vorab online veröffentlicht am 29.07.2025
Schlagwörter Anomaly detection, District heating systems, Semantic segmentation, Thermal imagery, Transformers, Unmanned aircraft systems
Nachgewiesen in Dimensions
OpenAlex
Scopus
Web of Science
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere EnergieZiel 11 – Nachhaltige Städte und Gemeinden
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page