KIT | KIT-Bibliothek | Impressum | Datenschutz

Detecting district heating leaks in thermal imagery: Comparison of anomaly detection methods

Vollmer, Elena ORCID iD icon 1; Ruck, Julian 1; Volk, Rebekka ORCID iD icon 1; Schultmann, Frank ORCID iD icon 1
1 Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

District heating systems offer means to transport heat to end-energy users through underground pipelines. When leakages occur, a lack of reliable monitoring makes pinpointing their locations a difficult and costly task for network operators. In recent years, aerial thermography has emerged as a means to find leakages as hot-spots, with several papers proposing image analysis algorithms for their detection. While all publications boast high performance metrics, the methods are constructed around very different datasets, making a true comparison impossible.

Using a new set of aerial thermal images from two German cities, this paper implements, improves, and evaluates three anomaly detection methods for leakage detection: triangle-histogram-thresholding, saliency mapping, and local thresholding with filter kernels. The approaches are integrated into a software pipeline with globally applicable pre- and postprocessing, including vignetting correction. While all methods reliably detect thermal anomalies and are suitable for automated leakage detection, triangle-histogram-thresholding is the most robust.


Verlagsausgabe §
DOI: 10.5445/IR/1000175054
Veröffentlicht am 21.10.2024
Originalveröffentlichung
DOI: 10.1016/j.autcon.2024.105709
Scopus
Zitationen: 6
Web of Science
Zitationen: 5
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2024
Sprache Englisch
Identifikator ISSN: 0926-5805, 1872-7891
KITopen-ID: 1000175054
Erschienen in Automation in Construction
Verlag Elsevier
Band 168
Heft Part A
Seiten Art.-Nr.: 105709
Projektinformation AI4EOSC (EU, EU 9. RP, 101058593)
Vorab online veröffentlicht am 02.10.2024
Nachgewiesen in Web of Science
Dimensions
Scopus
OpenAlex
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere EnergieZiel 11 – Nachhaltige Städte und Gemeinden
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page