KIT | KIT-Bibliothek | Impressum | Datenschutz

AnoVox: A Benchmark for Multimodal Anomaly Detection in Autonomous Driving

Bogdoll, Daniel ORCID iD icon 1; Hamdard, Iramm; Rößler, Lukas Namgyu; Geisler, Felix; Bayram, Muhammed; Wang, Felix; Imhof, Jan; de Campos, Miguel; Tabarov, Anushervon; Yang, Yitian; Gontscharow, Martin; Gottschalk, Hanno; Zöllner, J. Marius 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

The scale-up of autonomous vehicles depends heavily on their ability to deal with anomalies, such as rare objects on the road. In order to handle such situations, it is necessary to detect anomalies in the first place. Anomaly detection for autonomous driving has made great progress in the past years but suffers from poorly designed benchmarks with a strong focus on camera data. In this work, we propose AnoVox, the largest benchmark for ANOmaly detection in autonomous driving to date. AnoVox incorporates large-scale multimodal sensor data and spatial VOXel ground truth, allowing for the comparison of methods independent of their used sensor. We propose a formal definition of normality and provide a compliant training dataset. AnoVox is the first benchmark to contain both content and temporal anomalies.


Volltext §
DOI: 10.5445/IR/1000184346
Veröffentlicht am 29.08.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000184346
Vorab online veröffentlicht am 13.05.2024
Schlagwörter Anomaly Detection, Autonomous Driving, Benchmark
Nachgewiesen in arXiv
Dimensions
OpenAlex
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page