KIT | KIT-Bibliothek | Impressum | Datenschutz

Are Foundation Models Ready for Industrial Defect Recognition? A Reality Check on Real-World Data

Baeuerle, Simon; Khanna, Pratik; Friederich, Nils ORCID iD icon 1,2; Sitcheu, Angelo Jovin Yamachui ORCID iD icon 1; Shakirov, Damir; Steimer, Andreas; Mikut, Ralf ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
2 Institut für Biologische und Chemische Systeme (IBCS), Karlsruher Institut für Technologie (KIT)

Abstract:

Foundation Models (FMS) have shown impressive performance on various text and image processing tasks. They can generalize across domains and datasets in a zero-shot setting. This could make them suitable for automated quality inspection during series manufacturing, where various types of images are being evaluated for many different products. Replacing tedious labeling tasks with a simple text prompt to describe anomalies and utilizing the same models across many products would save significant efforts during model setup and implementation. This is a strong advantage over supervised Artificial Intelligence (AI) models, which are trained for individual applications and require labeled training data. We test multiple recent FMS on both custom real-world industrial image data and public image data. We show that all of those models fail on our real-world data, while the very same models perform well on public benchmark
significant effort. Promising ideas for prompting during quality inspection are, e.g., a description of the normal state of the product or a description of the visual or physical properties of the defects. These reduced labeling efforts, combined with the additional opportunity to integrate domain expert knowledge via text input, would enable easier scaling across several products, i.e., with significantly lower efforts for each product. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000190050
Veröffentlicht am 29.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Biologische und Chemische Systeme (IBCS)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000190050
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Weitere HGF-Programme 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Erschienen in Proceedings - 35. Workshop Computational Intelligence: Berlin, 20. - 21. November 2025
Veranstaltung 35. Workshop Computational Intelligence (2025), Berlin, Deutschland, 20.11.2025 – 21.11.2025
Verlag Karlsruher Institut für Technologie (KIT)
Seiten 1-21
Schlagwörter Computer Vision and Pattern Recognition (cs.CV)
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page