KIT | KIT-Bibliothek | Impressum | Datenschutz

MulT_predict - An optimised comprehensive multicomponent geothermometer

Ystroem, Lars H. ORCID iD icon 1; Nitschke, Fabian 1; Kohl, Thomas 1
1 Institut für Angewandte Geowissenschaften (AGW), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

In this study, we introduce MulT_predict as a fully integrated solute multicomponent geothermometer, combining numerical optimisation processes for sensitive parameters to back-calculate to chemical reservoir conditions. This results in a state of the art geothermometer, providing an accurate reservoir temperature estimation validated by geothermal borehole measurements on a worldwide scale. In addition, a universally valid mineral assemblage for an unknown reservoir composition is developed, focusing on worldwide applicability. Using the evolved methodology, the limits of the optimisation processes are determined by using a synthetic brine (150 ◦C, pH 6, aluminium concentration 0.003 mmol/l) and successively perturbing its geochemical equilibrium state. Individual back-calculation of reservoir conditions lead to valid temperature estimations of 145 ◦C, 3.4% lower than the initial temperature while a simultaneous and interdependent optimisation reconstructs the sensitive parameters even more precisely with a deviation of 0.056 for the initial pH value, and 0.164 μmol/l for the aluminium concentration.


Postprint §
DOI: 10.5445/IR/1000150063
Veröffentlicht am 18.08.2023
Preprint §
DOI: 10.5445/IR/1000150063/pre
Veröffentlicht am 18.08.2022
Originalveröffentlichung
DOI: 10.1016/j.geothermics.2022.102548
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2022
Sprache Englisch
Identifikator ISSN: 0375-6505
KITopen-ID: 1000150063
HGF-Programm 38.04.04 (POF IV, LK 01) Geoenergy
Erschienen in Geothermics
Verlag Elsevier
Band 105
Seiten Art.-Nr.: 102548
Vorab online veröffentlicht am 17.08.2022
Nachgewiesen in Scopus
Dimensions
Web of Science
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page