KIT | KIT-Bibliothek | Impressum | Datenschutz

Robotic Wiring Harness Bin Picking Solution Using a Deep-Learning-Based Spline Prediction and a Multi-stereo Camera Setup

Zürn, Manuel ; Schmerbeck, Carsten ORCID iD icon 1; Kernbach, Andreas; Kläb, Mara I.; Yaman, Alper; Bragmann, Daniel; Heizmann, Michael 1; Huber, Marco; Kraus, Werner; Lechler, Armin; Verl, Alexander
1 Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie (KIT)

Abstract:

The automation of wire harness handling and installation in the automotive industry presents a challenge due to the inherent flexibility of cables, the high variance in wire harnesses and plug combinations, and the intricate spatial configurations required for accurate installation. Addressing this challenge requires the integration of sensors for accurate pose estimation with high-dexterity robotic systems. This work introduces a novel approach to automate the process of grasping of wiring harnesses for autonomous installation using a robotic arm. The methodology encompasses several stages. Initially, a multi-stereo camera setup creates a high-accuracy representation of the working area. Next, a deep learning model predicts a spline representing the segment with the biggest connector attached to it for 6D grasp pose estimation. The final stage uses a skill-based robot program to perform the grasping of the wiring harness, which is evaluated using 50 random configurations inside a bin. As a result, the proposed solution achieves an accuracy of 82% of successful wiring harness bin picking grasps, where success is defined when the result is that a specific connector on the wiring harness is in a predefined spot after grasping. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000182824
Veröffentlicht am 02.07.2025
Originalveröffentlichung
DOI: 10.1007/978-3-031-88831-1_25
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industrielle Informationstechnik (IIIT)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISBN: 978-3-031-88830-4
ISSN: 2524-7247
KITopen-ID: 1000182824
Erschienen in Advances in Automotive Production Technology – Digital Product Development and Manufacturing. Ed.: D. Holder
Veranstaltung 3rd Stuttgart Conference on Automotive Production (SCAP 2024), Stuttgart, Deutschland, 20.11.2024 – 22.11.2024
Verlag Springer Nature Switzerland
Seiten 319–334
Serie ARENA2036
Vorab online veröffentlicht am 20.06.2025
Nachgewiesen in OpenAlex
Dimensions
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page